
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

A Survey of Energy Efficient Scheduling Algorithms for

Real-time Systems over Parallel Machines

Muhammad Zakarya
1
, Nazar Abbas

2
, Ayaz Ali Khan

3

1Department of Computer Science, Abdul Wali Khan University, Mardan

2,3COMSATS Institute of Information Technology, Islamabad

Abstract:

A real-time system is defined as any information

processing system which has to respond to externally

generated input stimuli within a finite and specified period,

in other words it is defined as the ability of the system to

guarantee a response after a fixed time has elapsed.

Computational real-time systems are increasingly used to

control tasks in numerous application fields like aircraft,

automotive and manufacturing process etc. Systems such as

chemical and nuclear plant control, flight control systems,

space missions, digital control, military systems,

telecommunications, and multimedia systems all make use

of real-time technologies. The most important attribute of

real-time systems is that the correctness of such systems

depends not only on the computed results but also on the

time at which results are produced. In other words, real-

time systems have timing requirements that must be met.

Since the timing constraints are the most important

characteristic of real-time systems, they are classified as

hard or soft according to the usefulness of the computed

results produced after the timing deadlines Parallel systems

including HPC, multiprocessors, multicores, clusters, grids,

clouds and distributed systems are very promising from

performance perspective, however higher power

consumption issues arises as a challenge associated with
such systems.

Keywords: Scheduling, Operating Systems, Parallel

Systems, RTS, Energy Efficiency

1. Introduction:

Real-time systems are paying attention on periodic

task models, in which tasks are released at habitual

time periods. On the other hand with maturity of

multiprocessor structural design, today most real-

time systems function in dynamic environment where

human activities (aperiodic tasks) are predictable.

Aperiodic tasks are to be completed as soon as

possible; consequently the priority assigned to such

aperiodic tasks ought to be higher than those of

periodic tasks. Multiprocessor are very promising

from performance perspective, however higher power

consumption issues arises as a challenge associated

with such systems. Since these systems generally

remain under-utilized and the systems operate at

maximum speed throughout and thus becomes an

ideal candidate for power aware scheduling. When

we reduce the energy consumption then the response

time is increased. And it will degrade the

performance of real time systems. In this paper we

have summarized a number of scheduling algorithms

for real-time applications that might result in less

power consumption while system performance in

maintained to the best level. In the following section

we have to the point review of some general terms in

this aspect. Real-time Systems are divided into two

major classes.

 Hard real-time systems &

 Soft real-time systems

In hard real-time systems it is a must to carry out the

deadline requirements. Hard real-time tasks cannot

let pass any deadline, otherwise, disagreeable or

deadly results will be produced in the system. Special

purpose systems are considered hard. This is crucial

in situations where system failure may result in

damage or loss of life [6]. As compared to hard real-

time systems, missing a deadline only degrades the

overall system predictability in soft real-time

systems. Although missing deadlines is not pleasing

in a real-time environment, soft real-time tasks could

miss some deadlines and the system could still work

acceptably. In soft real-time systems however,

lateness have no severe effect. There is some space

for delayed operation and the failure has no such

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

adverse effect on the entire system but decrease in a

process or system quality. Such a system is called

tolerant of incorrect completion times because the

undesirable results can however be tolerated by these

systems [16]. In maximum real-world environments

such as space or airborne platform management,

factory process control, aerospace and defense

systems, nuclear systems, robotics, stock exchange,

multimedia computing, medical systems and

embedded intelligent devices, the real-time system is

widely applied [17, 20]. A real-time system is

bounded by the boundaries of time and load, and its

goal is to properly schedule the tasks and make sure

as more tasks as possible to be accomplished before

their deadlines [19].

2. Real-Time Scheduling Theory

Predictability is the main constraint in a real-time

system which distinguishes it from traditional

computing system. This predictability to the real-time

system is provided by scheduling algorithms and

RTOS, which manage and schedule resources and

tasks to reach the deadlines of the real-time system so

that they may not be missed and to timely respond to

the real-world environment. A scheduling algorithm

executes a task at specific time. Two main types of

scheduling algorithms exist.

i. Preemptive scheduling algorithms

ii. Non-preemptive scheduling algorithms.

In preemptive scheduling algorithm, the processor /

resource is preempted from a low priority task when

a higher priority task requests the same resource and

the higher priority task gets starting. So such a

method is used for tasks priorities assignment. In

non-preemptive scheduling algorithms, the currently

executing task is not preempted until and unless it

completes its execution.

Priority-Driven Scheduling:

For understanding the importance of priority based

scheduling, we consider an example presented in

[24]. Suppose that a system has only two periodic

tasks 1 and 2 having periods 50 and 100

respectively. Both are initiated at critical instant.

Assume that both τ1 and τ2 have worst case execution

times of C1 = 25 ms and C2 = 40 ms respectively.

Processor utilization of τ1 is, U1 = 25/50 = 0.5 = 50 %

and τ2 has, U2 = 40/100 = 0.4 = 40 % and the total

requested CPU utilization is U = U1 + U2 = 50 + 40

= 90 %. So total of 90 % CPU is used. Here the

author [24] considers two cases to execute τ1 and τ2.

Case1: Assigning priorities by using a static priority

scheduling algorithm where priority (τ1) > priority

(τ2).

Case 2: Assigning priorities by not using any

scheduling algorithm where priority (τ2) > priority

(τ1). Both of the cases are illustrated by the following

figures. In Fig 2, both tasks meet their respective

deadlines. In Fig 3, however, task1 misses a deadline,

even though 10 % CPU idle time is available.

In fact many more new tasks can be added into the

system by using a static priority scheduling algorithm

because the total processor utilization is only 90 %

and remaining 10 % CPU time is available for

executing other tasks. This example shows that how

much properly a priority-driven scheduling algorithm

can schedule tasks.

In scheduling phenomenon, a priority is typically a

positive integer representing the hurry or importance

assigned to an activity. By convention, the hurry is in

inverse order to the numeric value of the priority, as

priority 1 is the highest level of priority. We shall

assume here for simplicity purpose that a task has a

single, fixed priority. On the given condition’s we

can consider the following two simple scheduling

disciplines:

Preemptive priority based execution:

When the processor is at rest, the ready task with the

peak priority is chosen for execution; but still at any

stage of time, the execution of a specific task can be

preempted if a task of superior priority becomes into

a ready state. As a result, at all times the processor is

either at rest or executing the ready state task with the

utmost priority. Scheduling is a priority

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

motivated/based technique. Therefore scheduling of

tasks in a hard real time systems are classified into

two wide-spectrum categories

i. Fixed priority based scheduling

ii. Dynamic priority based scheduling

For a given set of jobs, the general scheduling

problem asks for sorted form according to which the

jobs are to be executed in such a way that different

constraints are fulfilled. Generally, a job is

characterized by its processor execution time, ready

state time, task deadline (validity duration), and

resource requirements. The execution of a job may or

may not be interrupted i.e. (preemptive scheduling or

non-preemptive scheduling). On behalf of the set of

jobs, there is a preference relation which constrains

the organized form of execution. In particular, the

execution of a job cannot set in motion until the

execution of all its predecessors (according to the

priority relation) is completed. On the system in

which the jobs or tasks are to be executed is

characterized by the amounts of resources, available

the following basics goals should be considered

strictly in dealing with scheduling problems in a real-

time system:

i. Meeting the timing constraints (processor

execution time, ready state time) of the real-

time system

ii. Preventing concurrent access to shared

resources and multiple shared devices

iii. Attaining a high grade of utilization while

satisfying the timing constraints of the real-

time system; however this is not a most

important driver.

iv. Dropping the cost & charge of context

switches caused by preemption in scheduling

algorithm

v. Plummeting the communication cost in real-

time distributed systems; we should find the

most advantageous way to decompose the real-

time applications into smaller parts or

portions, in order to have the smallest amount

of communication cost between mutual

portions (where each & every portion or part

of a real-time application is assigned to a

single computer).

Additionally, the following attributes and objectives

are much loved in advanced real-time systems:

a. Studying a combination of hard real-time, firm

real-time, and soft real-time activities which

implies the livelihood of applying dynamic

scheduling policies that respect the optimality

criteria.

b. Task scheduling for a real-time system whose

behavior and attitude is dynamically adaptive,

reconfigurable, and consequently reflexive and

intelligent as well.

c. Considering reliability and dependability of

different tasks, security, and safety.

3. Scheduling Algorithms

a. Earliest Deadline First (EDF) Scheduling

As the name describes, the earliest-deadline-first

scheduling algorithm uses the deadline of a task as its

priority. The task comprises the earliest deadline has

the highest priority, while the task with the latest

deadline has the lowest priority and vice versa. One

characteristics of this scheduling algorithm is that the

schedulable bound is 100% for all task sets.

Secondly, because priorities are assigned in a

dynamic pattern, therefore the periods of tasks can be

changed at any time. One of the most important

problems with the EDF scheduling algorithm is that

there is no way to assurance which tasks will fail in a

transient overloaded situation.

One of the most famous used algorithms belonging to

task scheduling algorithms family is the EDF

scheduling algorithm, according to which priorities

assigned to tasks are inversely proportional to the

absolute deadlines of the active jobs on the system.

The feasibility analysis of periodic task sets under

EDF scheduling algorithm was first presented in

1973 by Liu and Layland, who presented in their

respective paper on the subject, that, under the same

simplified assumptions used for Rate Monotonic

(RM) scheduling algorithm, a set of n periodic tasks

is schedulable by the EDF scheduling algorithm, if

and only if

In 1974, Dertouzos showed in his research that EDF

scheduling algorithm is optimal and feasible amongst

all preemptive scheduling algorithms, in the sense

that, if there exists a feasible schedule for a task set

by any scheduling algorithm, then the schedule

produced by EDF scheduling algorithm is also

feasible. Later, Mok presented another optimal

algorithm, called Least Laxity First (LLF), a detail is

available in [22], which assigns the processor to the

active task with the smallest laxity and carelessness.

Although both LLF scheduling algorithm and EDF

scheduling algorithm are optimal algorithms, but still

LLF scheduling algorithm has a larger overhead due

to the higher number of context switches caused by

laxity and carelessness changes at run time. For this

reason, most of the work done in the real-time

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

4

research society concentrated on EDF scheduling

algorithm to relax some unsophisticated suppositions

and assumptions and extend the feasibility analysis to

more general cases.

The Earliest Deadline First (EDF) scheduling

algorithm is the most extensively and widely used

scheduling algorithm for real-time systems. For a set

of preemptive tasks (are they periodic, a-periodic, or

sporadic), EDF scheduling algorithm will find a

schedule if a schedule is possible. The application of

EDF scheduling algorithm for non-preemptive tasks

is not as widely studied. EDF scheduling algorithm is

optimal for sporadic non-preemptive tasks, but EDF

scheduling algorithm may not find an optimal

schedule for periodic and a-periodic non-preemptive

tasks; it has been shown that scheduling periodic and

a-periodic non-preemptive tasks is NP-hard.

On the other hand, non-preemptive EDF techniques

have produced near to most favorable schedules for

periodic and a-periodic tasks, principally when the

system is lightly loaded. When the system is

overloaded, however, it has been shown that EDF

approach leads to dramatically and vividly poor

performance (low success rates).

b. Rate Monotonic Scheduling

Rate monotonic is a fixed priority scheduling

algorithm for the real time systems. Fixed priority

means that the priority of a task is not change during

its execution means that same priority is assigned to

all jobs of a task. Priority is assigned according to the

period of a task. Period of a task mean’s the time

after which a next job of a task is released. So in

rate monotonic the priority based on its period. So in

the fixed priority scheduling algorithm the period of a

task is compared and assign high priority to the task

have small period. Alternatively the rate of tasks is

inverse to the period, so jobs with higher rate have

higher priority.

c. Deadline Monotonic Scheduling

Deadline monotonic is a fixed priority scheduling

algorithm for the real time systems. Fixed priority

means that the priority of a task is not change during

its execution means that same priority is assigned to

all jobs of a task. Priority is assigned according to the

relative deadline of a task, shorter the deadline higher

the priority. Deadline monotonic is equal to rate

monotonic when Di=Pi.

d. Maximum Urgency First Scheduling

MUF is a mixed priority scheduling. MUF is the

combination of mixed and dynamic priority

scheduling algorithm. MUF define urgency for each

task. Urgency is a combination of two fixed priorities

(criticality and user priority) and a dynamic priority.

MUF assign priorities in two phases.

First phase: Consist of three steps.

1) Sort the tasks according to its periods then

define critical set.

2) Task in critical set is high priority and other

task is low priority.

3) Optimal unique priority is assign to each task.

Second phase: Consist of three steps:

1) If there is only one critical task it executes it.

2) If there is more than one critical task execute

the one with highest dynamic priority. The task

with least laxity is considered to be the highest

priority.

3) If there is more than one task with the same

laxity select the one with the highest user

priority.

e. MMUF Scheduling

Due to MUF scheduling mechanism critical task fail.

MUF select the task with maximum laxity the

remaining execution time of T1 is greater than T2

laxity so T2 miss its deadline, as shown in example

below.

MMUF is the new version. The aim of MMUF is to

solve the problem of MUF. MMUF use a unique

importance parameter. MMUF either use EDF or

MLLF to define the dynamic priority. MMUF is used

instead of LLF because it reduced the context

switching.

MMUF consist of two phases.

Fixed priorities:

1. Order the tasks according to its importance.

2. Define the critical task for the first N tasks so

the total CPU load factor does not exceeds from

100%

Dynamic priority:

1. If there is it least one critical task in the ready

queue

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

5

(a) Select the one with earliest deadline

(b) If more than one task has the same

critical task then select the one with highest

impotence.

2. If there is no critical task in a ready queue.

(a) Select the one with earliest deadline

(b) If more than one task has the same

critical task then select the one with highest

impotence.

4. Related Work:

Those Computers or Systems having the capability to

complete the execution of a task before a deadline are

called real-time systems. Real time systems not only

convey correct results but when i.e. in time these

results are delivered. In other words real-time

systems are defined as, “those systems in which the

correctness of the system depends not only on the

logical result of calculation, but also at the time at

which the outcome are created”. If the timing

constraints of the system are not met, system

malfunction is said to have occurred. Hence, it is

necessary & indispensable that the timing constraints

of the systems are assured to be met. To guarantee

timing behavior requires that the system be

predictable. Predictability means that when a task is

initiated or putted in ready state it must be possible to

conclude its completion time with assurance aspect.

A real-time system may be any information

processing system which has to respond to externally

generated input stimuli within a limited and particular

period. To define in another way it is the ability of

the system to promise a reply after a fixed time has

beyond. Computing real-time systems are

increasingly used to manage tasks in various

application fields like jet, automotive and

manufacturing process etc. These systems have to

deal with a foremost limitation, the computation

outcomes must be provided inside a delay which

allows the system to keep the process under its direct

control. Real-time systems are in general battery

operated and battery is mandatory to be replenished

on a regular basis, to keep the system operational.

Since real-time systems commonly remain under-

utilized and it is recommended to take up the system

speed, subject to the workload so that the battery life

is unlimited.

Real-time systems are more often than not, battery

operated and battery is compulsory to be replenished

repeatedly to keep the system ready. Since real-time

system normally remain under-utilized and it is

recommended to assume the system speed, subject to

the workload so that the battery life is

comprehensive. The two major techniques of

minimizing the processor power expenditure are:

 Shutdown and

 Slowdown

Though promising for broad-spectrum purpose

system, shutdown techniques are not suitable for real-

time systems, to shutting down and then reactivating

the shut downed device may result in deadline let

pass. Slowdown through DVS, DVFS is known to be

efficient for power minimization. Most suitable

algorithms have been suggested for fixed priority

scheduling over a fixed number of voltage levels.

When tasks complete former than the own deadline,

there is a chance for additional (dynamic) slowdown

that increases the power savings. DVS referred as a

power saving technique, which is achieved by

reducing power dissipation of the core by lowering

the supply voltage and operating frequency. DVS is a

best standard for administration of the power

utilization of a system. It is based on the fact that the

dynamic (switching) power P of CMOS circuits is

strongly dependent on the core voltage V and the

clock frequency f according to equation

fvp 2

Since

E p t 

It is shown that the execution time is inversely

proportional to the frequency and thus, the total

energy E for the computation is directly proportional

to the square of the voltage:

2vE 

Prior works on energy aware scheduling have mainly

focused attention on preemptive scheduling in real

time systems, however there is a shortcoming of

using preemptive scheduling, which is the number of

context switching is higher as compared to non-

preemptive scheduling. Context switch is large both

in terms of time as well as in terms of energy.

Consequently, this number becomes irrationally very

much large, when DVS technique is applied, as the

task preemption further increases. It is shown in [3]

that a context switch takes a time 25 to 150 micro-

seconds and energy (up to 4 µJ) overhead. This

impact is due to changing of the voltage and allowing

it to become steady. In Particular, marketable

processors have different frequency overheads such

as Intel’s Strong-Arm takes up to 150 microseconds

[6] while XScale takes around 30 micro seconds [4].

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

6

A complete voltage transition can be performed in

less than 300 micro-seconds in Transmeta Cursoe

5300 processor [5].

To keep in mind the above negative characteristic

associated with using DVS in preemptive scheduling,

there is a need to stay away from preventable context

switching and still implements to investigate DVS

into non-preemptive scheduling. It is predictable that

the planned amalgamation will more reduce the

power consumption of the real-time system without

making any compromise on the timing constraints of

the real time system.

The [31] proposed a new technique that eliminates

the drawback of both scheduling algorithm (RM and

DM) by introducing a priority component (PC),

which is defined by the user, based on task

importance. [31] contains three components i.e. task

period, task deadline and priority component (PC). It

allocated a weightage percentage to the entire

components (task period, task deadline), further

priority of task is obtained by adding the weightage

percentage of task period and task deadline. Then

scheduling component (SC) is computed by adding

these three components. All tasks are rearranged

according to it’s SC by increasing order. The one

with highest SC is considered as most important task

and is executed first.

In SC-WITH-DVFS [31] the authors use CPU burst

for the task utilization that means a task completes its

execution when its CPU burst is executed. They have

used tl_plane for load balancing on processors. In

[31] they find tl_plane for each processor and each

processor is utilized to it’s tl_plane. tl_plane is a

restriction for the processors that processor must not

be utilized after it’s tl_plane. tl_plane is calculated by

adding the CPU burst of all tasks and divides it by

number of processors.

So if C is CPU burst of each task and M is the

number of processor then tl_plane is calculated by

 N

 tl_plane =  (C / M)

 i = 0

For the achievement of load balancing the task

splitting technique is also used with tl_plane. The

method for the task splitting is that when a CPU burst

Ci of a task i is greater than the remaining tl_plane of

a processor then it must be divided. The method

according to which Ci must be divided is that if the

CPU burst Ci of a task i is equal to the remaining

tl_plane then it is executed on current processor and

the remaining CPU burst of task is migrated to the

minimum utilized processor i.e. a processor which

have minimum cycles of a task, executed.

In [30] the authors have proposed the concept to

dynamically scaling the frequency of each processor

according to the current active tasks in the ready

queue. In this algorithm there is no concept for the

important tasks and unimportant tasks leading to

starvation problems.

5. Comparative Study

Multiprocessor environment is used for processor

intensive real-time applications, where tasks are

assigned to processor subject to some pre-defined

criteria such as CPU load etc. Conventionally, real-

time systems are paying attention on periodic task

models, in which tasks are released at habitual time

periods. On the other hand with maturity of

multiprocessor structural design, today most real-

time systems function in dynamic environment where

human activities (aperiodic tasks) are predictable.

Aperiodic tasks are to be completed as soon as

possible; consequently the priority assigned to such

aperiodic tasks ought to be higher than those of

periodic tasks. In distinction to its counterpart i.e.

uniprocessor systems, the field of scheduling

miscellaneous tasks i.e. periodic and aperiodic tasks

on multiprocessor systems, still remains unexplored.

Similarly, higher power consumption issues arise as a

challenge associated with such systems [27, 28, 29,

30].

RM and DM [46, 47] are important scheduling

algorithms for real-time systems. RM and DM both

are fixed priority algorithms and give equal

importance to each task, which yields a major

drawback of RM and DM. In case of RM, RM assign

a higher priority to the task having short period due

to which unimportance task having short period is

scheduled first from the importance tasks having

longer periods [23]. The same criteria is also implies

to deadline monotonic in which the scheduling

criteria based on its deadline, where a task having

short deadline is schedule first from those important

tasks having longer deadline. In [1] the authors have

proposed a new algorithm that can schedule the most

important tasks first. In [2] the authors have proposed

the concept to dynamically scaling the frequency of

each processor according to the current active tasks

in the ready queue. In this algorithm there is no

concept for the important tasks and unimportant tasks

leading to starvation problems. In [34] if the TL

plane is a real number, then all processors are equally

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

7

utilized. If TL plane is FF number, then at least one

processor is less utilized, in which case there a surety

that at least one task has been splitted. If number of

tasks is increased than number of processors, then

processors are more utilized.

In [1] the authors have proposed a new load

balancing algorithm for scheduling real-time tasks in

a multi-core processor technology. They have also

introduced task splitting concept to balance the load

on each core to minimize its energy requirements.

They have achieved workload partitioning with 100

percent precision. This algorithm is capable to

distribute workload amongst all processing cores

equally and keep the utilization of all processing

cores on average. This means that no processing core

is extra loaded or extra burdened. The existing

problem in proposed technique is that all processing

cores are considered to be homogeneous. Their

argument that if the workload is distributed evenly,

all cores will complete their work at the same time, is

true but still a gap is there about heterogeneous

technology. The authors have discussed cycle-

conserving technique which can update the utilization

of core dynamically on release and completion of a

task and hence results in power management.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

8

TABLE COMPARISON: EXSISTING ALGORITHMS

Criteria Rate

monotonic

(RM)

Deadline

monotonic

(DM)

Next-fit

Algorithm

Utilization

balancing

algorithm

Power efficient

rate monotonic

scheduling for

multiprocessor

system

new

scheduling

algorithm for

real time

system

energy-

efficient

scheduling

algorithm for

sporadic real-

time tasks in

multiprocessor

systems

Real-time

scheduling with

task splitting on

multiprocessors

(MP):

SC-WITH-

DVFS

Task

importance

Same Same Same Same Same Priority

component is

added

Same Same Priority

component is

added

Processor Uniprocessor MP MP MP MP Uniprocessor MP MP MP

Scheduling

criteria

Pi Di Pi Util Pi Pi

Di

Task priority

Pi Pi Pi

Di

Task priority

TL-plane

Task

scheduling

Tasks are

arranged in

ascending

order based

on Pi

Tasks are

arranged in

ascending

order based on

Di

Tasks are

arranged in

ascending

order based on

Pi

Tasks are

arranged in

ascending

order based on

Util

Tasks are

arranged in

ascending

order based on

Pi

Tasks are

arranged in

ascending

order based

on

scheduling

component

Tasks are

arranged in

ascending

order based on

Pi

Tasks are

arranged in

ascending order

based on Pi

Tasks are

arranged in

ascending

order based on

scheduling

component

Time

difference

Pi does not

change with

time

Di does not

change with

time

Pi does not

change with

time

Task Util does

not change

with time

Pi does not

change with

time

Pi , Di, task

priority does

not change

with time

Pi does not

change with

time

Pi does not

change with

time

Pi, Di, task

priority does

not change

with time

Problem Starvation Starvation Starvation,

Load

balancing

No task

splitting

Perfect

balancing of

utilization

across

different

processor is

difficult.

Starvation

There is no

task splitting.

And all

processor are

not equally

utilized

Starvation

Is reduce for

only

uniprocessor

Starvation Starvation,

Load balancing

In some

situations at

most one

processor is

less utilized

Energy

saving by

N/A N/A N/A N/A N/A N/A DVS N/A Load

balancing

Task

Splitting

No No Yes No No No No Yes Yes

Load

Balancing

Yes Yes No No No N/A Yes No Yes

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

9

6. Conclusion:

Power aware scheduling is the culling edge technique

for reducing power constraints of multiprocessor

systems. These systems generally remain under-

utilized thus becomes an ideal candidate for power

aware scheduling. In recent times it is realized there

is a need for energy reduction in processors, a lot of

work has been done on minimizing the energy

reduction. As a drawback of reducing energy

consumption of the system, its response time is

increased, hence degrades the overall performance of

the systems [36].

In multi-processor environments [37] i.e. HPC

(including clusters, grids and clouds) the main issue

is heating and energy conservation. Our goal is to

study different techniques that helps in minimizing

the energy consumption so that the cooling cost will

be reduced. Scheduling periodic and aperiodic tasks

such that the load is balanced amongst different

processors and the energy consumption is reduced, is

a major concern and an active research topic.

Runtime power reduction mechanisms can also

reduce the energy expenditure to some extent. Some

approaches have arisen frustrating to diminish energy

spending at HPC but still HPC providers are in want

of mechanisms and techniques not only for sinking

energy eating but also for accomplishing with the

required QoS to guarantee the customer happiness.

There still stay alive some gaps that must be sheltered

to attain the energy performance stability that is

essential in HPC and scientific computing

environment [38].

References

[1] Zakarya, M., Dilawar, N., Khattak, M. A., & Hayat,

M. (2013). Energy Efficient Workload Balancing

Algorithm for Real-Time Tasks over Multi-

Core. World Applied Sciences Journal, 22(10), 1431-

1439.

[2] Zakarya, M., & Khan, A. A. (2012). Cloud QoS, High

Availability & Service Security Issues with Solutions.

IJCSNS, 12(7), 71

[3] Zakarya, Muhammad, Izaz Ur Rahman, and Imtiaz

Ullah. "An Overview of File Server Group in

Distributed Systems." Ijtech.org

[4] Zakarya, Muhammad, Ayaz Ali Khan, and Hameed

Hussain. "Grid High Availability and Service Security

Issues with Solutions." (2010): 978-1.

[5] Y. Shin and K. Choi,”power conscious fixed priority

scheduling for hard real-time systems”, in design

automation conference, 1999, pp.134-139.

[6] KRISHNA, C. M., AND LEE, Y.-H. Voltage-clock-

scaling techniques for low power in hard real-time

systems. In Proceedings of the IEEE Real-Time

Technology and

[7] Applications Symposium (Washington, D.C., May

2000), pp. 156–165.

[8] PERING, T., AND BRODERSEN, R. The simulation

and evaluation of dynamic voltage scaling algorithms.

In Proceedings of the International Symposium on

Low-Power Electronics and Design ISLPED’98

(Monterey, CA, Aug. 1998), pp. 76–81.

[9] POUWELSE, J., LANGENDOEN, K., AND SIPS, H.

Energy priority scheduling for variable voltage

processors. In Proceedings of the International

Symposium on Low-Power Electronics and Design

ISLPED’01 (Huntington Beach, CA, Aug. 2001).

[10] Alexandros Zerzelidis, A Framework for Flexible

Scheduling in Real-Time Middleware, PhD Thesis,

The University of York, Department of Computer

Science, November 2007.

[11] www.embedded.com

[12] Hui Chen, Jiali Xia, A Real-Time Task Scheduling

Algorithm Based on Dynamic Priority, In Proceedings

of International Conferences on Embedded Software

and Systems, 2009.

[13] A. Burns, D. Prasad, A. Bondavalli, F. Giandomenico,

.Ramamritham, J. Stankovic, L. Strigini, The Meaning

and Role of Value in Scheduling Flexible Real-Time

Systems. Journal of Systems and Architecture, 46, pp.

305~325, 2000.

[14] http://www.wisegeek.com/what-is-real-time.htm

[15] Gaurar Arora , Automated Analysis and Prediction of

Timing Parameters in Embedded Real-Time Systems

using Measured Data, MS Thesis, University of

Maryland, June 1997.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

10

[16] Sang H-Son, Lecture on Real-Time Database Systems

and Data Services: Issues and Challenges, Department

of Computer Science, University of Virginia

Charlottesville.

[17] www.netrino.com/Embedded-Systems/How-To/RMA-

Rate-Monotonic- lgorithm

[18] Min-Allah N, Young-Ji W, Jiang-Sheng X, Liu J,

Revisiting Fixed Priority Techniques, In Proc of

Embedded and Ubiquitous Computing, LNCS 4808,

pp. 134~145, 2007.

[19] Enrico Bini, Giorgio C. Buttazzo, Giuseppe Lipari,

Minimizing Energy in Real-Time Systems with

Discrete Speed Management, ACM Transactions on

Embedded Computing Systems 8(4), July 2009.

[20] J. L.W.V. Jensen, Sur les Functions Convexes et les

Inegalites entreles Valeurs Moyennes, Acta Math,

Vol, 30, pp. 175~193, 1906.

[21] T. Ishihara and H. Yasuura, Voltage Scheduling

Problem for Dynamically Variable Voltage

Processors, In International Symposium on Low

Power Electronics and Design, pp. 197~202, 1998.

[22] K. .leffay, D.F. Stanat, C.U. Martel, On non-

preemptive scheduling of periodic and sporadic

tasks, in: Proc. of the Real-Time Systems Symposium,

1991, pp. 129-139.

[23] X. C. Yuanv M. C. Saksena, A. K. Agrawala, A

decomposition approach to non-preemptive real-tune

scheduling, Real-Time Syst., 6(1), 1994, pp. 7-35.

[24] V. Swaminathan,K. Chakarbarty, Pruning-based

energy optimal deterministic I/O device scheduling for

hard real time systems,ACM Trans embedded

comput.syst.4(1),2005,pp,141-167

[25] N. Guan, D Qingxu, G. zonghua, X Wenyao, Y. Ge,

schedulability analysis of non-preemptive and non-

preemptive EDF on partial runtime reconfigurable

FPGAs ACM trans des autom electron

systs.,13(4),2008,pp1-43.

[26] K.sangwon, L joonwon, k. jinsoo, runtime feasibility

check for non-preemptive real time periodic

tasks.inf.,process,Lett,97(3),2006,pp.83-87.

[27] R. jeuikar. R. gupta, energy aware non-preemptive

scheduling for hard real time systems in proc. of 17th

of euromicro conference on real –time

systems,2005,pp.21-30.

[28] C. L. Liu and J. W. Layland. Scheduling algorithms

for multiprogramming in a hard-real-time

environment. Journal of the Association for

Computing Machinery, 20(1):46–61, January 1973.

[29] M. L. Dertouzos. Control robotics: The procedural

control of physical processes. In IFIP Congress, pages

807–813, 1974.

[30] M. L. Dertouzos and A. K. Mok. Multiprocessor on-

line scheduling of hard-real-time tasks. IEEE Trans.

on Software Engineering, 15(12):1497–1506,

December 1989.

[31] M. Zakarya, Uzma, AA Khan, Power Aware

Scheduling Algorithm for Real-Time Tasks over

Multi-Processors, Middle-East Journal of Scientific

Research 15(1): 94-105, 2013

[32] Y. .C and R. Ramesh, A new scheduling algorithm for

real time system, (international journal of computer

and electrical engineering, vol.2, no.6, December,

2010 1793-8163).

[33] V. Salmani, S. Taghavi Zargar, and M. Naghibzadeh,

A Modified Maximum Urgency First Scheduling

Algorithm for Real-Time Tasks, (Word Academy of

Science, Engineering and Technology 2005).

[34] M. Zakarya, I. Rahman and A. Ali Khan, Energy

Crisis, Global Warming & IT Industry: Can the IT

Professionals make it better Some Day? A

Review:”(©2012 IEEE)

[35] N. Min-Allah1, A. Raza Kazmi, I. Ali, X. Jian-Sheng,

W. Yong- Minimizing Response Time Implication in

DVS Scheduling for Low Power Embedded Systems,

[36] J. Chen, C. -Fu Kuo, Energy-Efficient Scheduling for

Real-Time Systems on Dynamic Voltage Scaling

(DVS) Platforms (Council of Agriculture, Executive

Yuan, Taiwan, since Dec. 2006.)

[37] E. Seo, J. Jeong, S. Park, and J. Lee, Energy Efficient

Scheduling of Real-Time Tasks on Multicore

Processors, IEEE TRANSACTIONS ON PARALLEL

http://www.netrino.com/Embedded-Systems/How-To/RMA-Rate-Monotonic-
http://www.netrino.com/Embedded-Systems/How-To/RMA-Rate-Monotonic-

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 4, Aug-Sept, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

11

AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11,

NOVEMBER 2008

[38] Khan, A. A., & Zakarya, M. PERFORMANCE

SENSITIVE POWER AWARE MULTIPROCESSOR

SCHEDULING IN REAL-TIME SYSTEMS,

Technical Journal UET Taxila (Pakistan) 2010.

